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Generation of Some First-order Autoregressive Markovian Sequences

of Positive Random Variables with given Marginal Distributions

by

A. J. Lawrance
Dept. Statistics, University of Birmingham, Birmingham, England

and

P. A. W. Lewis
Dept. Operations Research, Naval Postgraduate School, Monterey, CA

ABSTRACT

-- ethods for simulating dependent sequences of contin-

uous positive-valued random variables with exponential

uniform, Gamma, and mixed exponential marginal distributions

are given. In most cases the sequences are first-order,

linear autoregressive, Markovian processes. A very broad

two-parameter family of this type, GNEAR(l), with exponential

marginals and both positive and negative correlation is

defined and its transformation to a similar multiplicative

process with uniform marginals is given. It is shown that

for a subclass of this two-parameter family extension to mixed

exponential marginals is possible, giving a model of broad

applicability for analyzing data and modelling stochastic sys-

tems, although negative correlation is more difficult to obtain

than in the exponential case. Finally, two schemes for auto-

regressive sequences with Gamma distributed marginals are out-

lined. Efficient simulation of some of these schemes is discussed.



1. INTRODUCTION

In a recent neries of papers 11,2,3,4,5,6,7,8,9] some

simple models have iJeen derived for stationary dependent

sequences of positive, continuous random variables with given

first-order marginal distributions. In general the dependency

structure, as measured by second-order joint moments (serial

correlations) mimics that of the usual linear mixed auto-

regressive-moving average (ARMA) models which have been used

for so long in time-series analysis. In the ARMA models,

which are defined quite generally, there is in usage an

implicit assumption of marginal normality of the random vari-

ables. This is clearly not the case if the random variables

are positive, say the times between events in a series of

events (Cox and Lewis 110]) or the successive response times

at a computer terminal. Thus the new models are derived to

accommodate situations in which the dependent random variables

have, for instance, exponential, Gamma, uniform and mixed

exponential marginal distributions. The exponential case is

the most highly developed, with the nomenclature (Lawrance and

Lewis [4]) EARMA (p,q) (exponential process with mixed moving

average-autoregressive structures of orders p and a respec-

tively) and NEARMA(p,q) (new EARMA(p,q)). A generalization

to extend the range of attainable autocorrelations to nega-

tive values has been defined with the nomenclature GNEARMA(p,q).

The development of the probabilistic properties of

these processes is given in the referenced papers, applications
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to queueing models and computer systems modelling by Lewis

and Shedler [11] and Jacobs [12,13], while development of

estimation and testing procedures has just begun.

The object of the present paper is to define and

discuss the simulation of the processes on digital computers,

though for the sake of brevity only the first-order Markovian,

autoregressive case is considered. The simplicity of structure

of these models--in general they are linear additive mixtures

of random variables--makes them ideal for this purpose. How-

ever, stationarity conditions are sometimes difficult to derive

analytically and in some cases it is not simple to generate

. the innovation random variables in the processes. A striking

example of this is the case of the Gamma first-order autore-

gressive process, given in Section 4A, for which an efficient

means of simulation was reported by Lawrance [7] for some para-

metric values. This procedure carries over into another Gamma

process, the Gamma-Beta process, which will be discussed in

Section 4B.

In Section 3 it is shown that a simple transformation

of the exponential sequences gives a direct multiplicative

method for generating dependent processes with uniform marginals.

These could be the basis in simulations for many other types

of dependent sequences.

Finally the NMEAR(1) process is detailed in Section 4C;

this generates a first-order Markovian process with mixed expo-

nential marginals. It is useful for simulating situations in

which the observed random variables are correlated and over-

dispersed relative to an exponentially distributed random variable.
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2. EXPONENTIAL AUTOREGRESSIVE MARKOVIAN SEQUENCES

We give here three methods of generating first-order

autoregressive, Markovian sequences with exponential marginal

distributions. The first two are defective in terms of their

sample path properties (the first more so than the second)

while the third, NEAR(l) and its generalization GNEAR(1), is

satisfactory in this respect and is a very rich model. The

defect of the first two sequences is also highlighted by the

simulation procedures used; they can be generated from one

sequence of exponential variables.

The word "autoregression" in the context of a stochas-

tic sequence {X n } is often used rather vaguely. In the

first place linear, additive autoregression is usually implied.

In the second place first-order autoregression can mean that

in the defining equation for Xn the previous value enters

explicitly. Thirdly, it can mean that the conditional expec-

tation of Xn, given Xn- 1 = Xn-l, is an additive linear

function of x

E(Xn X n-l = Xnl a + bXn-1 (2.1)

The processes discussed in this paper are autoregressive in

the latter two senses and, except in the case of uniform

marginals, are autoregressive in a linear additive way. They

are also Markovian; the Markovian property (first-order) means

that the probability structure of Xn , Xn+l,**. , given

Xn_ xn is independent of Xn 2 , Xn 3 . .. .

4



2A. The Exponential DAR(l) Process

A very simple exponential autoregressive Markovian

sequence is generated by the equation (Jacobs and Lewis

114,15])

Xn = VnXn 1 + (1 - Vn)En (2.2)

where the Vn s, n = 1,2,... are i.i.d with

P{Vn=I} = 1 - P{V n=0} = p and En , n = 1,2,... are, as

throughout the paper, independent exponential random variables

with parameter X and independent of the Vn s; that is

-Ax
P{E< x} =1- e , x > 0, >0

(2.3)

=0 , x < 0.

For this process the serial correlations p= corr(X 'Xn)
k n n+k

are

k
k = (2.4)

and

E(XnXn_1 = XnI) = PlXn-l + (1 - pl)/A. (2.5)

This process, which was introduced to model discrete valued

variables, is not well suited to modelling continuous data

because runs of Xn s with the same value can occur quite

frequently in the sample paths of the process. This happens

5



when Xn-1  is picked successively in (2.2), rather than the

innovation En . Moreover the lengths of the runs of similar

values are geometrically distributed.

2B. The Exponential EARI) Process

Another model is derived from the usual linear model

X = PX + E (2.6)

'lo. nn-1 n

in which the i.i.d. innovation process {n} is chosen so

that the X's are marginally exponential(A). Gaver and

Lewis 11] show that for this to be true, one must have

0 < P < 1 and

fEn w.p. l-p,
E =. .1 Pn

n 0 w.p. p , (2.7)

where {E n}, as previously, are i.i.d. exponential(X).

Again p k and E(X= Xn) PlXnl + (l-P),

as at (2.4) and (2.5) for the exponential DAR(l) model. The

difference is in the sample paths; the EAR(l) process simula-

tions show runs of geometrically decreasing Xn s, but no runs

of constant value. The geometrically distributed runs occur

when only PXnl is picked in (2.6).

The Markov property of the two sequences implies that

if X0  is chosen to be E0, an exponential(X) random variable

independent of El, E2 , ... , then X1, X21 ... forms a

stationary sequence.

6



Naive inspection of the defining equations (2.2), (2.6)

and (2.7) suggest that to generate a stationary sequence of

length N, Xl,..., N, (N+l) i.i.d. exponential deviates and

N uniform variates (for the selection process) are needed.

However, the sequences can be generated from only one exponen-

tial sequence; this is possibly related to the degeneracy in

the processes. This method uses the memoryless property of

exponential(A) variables, namely that if En is given to be

greater than a constant y, then En - y is again exponential(X).

Thus the algorithm for the EAR(l) process is to ini-

tialize by setting X = E0 ; subsequently set Xn = x if
0 0 n n-l

En < x = -n(l-p)/; otherwise set Xn = PXn-I + (En - xp

This uses the fact that, from (2.3), P{En < xp} = P.

Even greater efficiency can be obtained, though this

must be qualified by considerations as to whether (i) the

Xn's are to be generated one at a time or in an array; (ii)

a subroutine is available to generate exponential random

variables faster than can be done by taking logarithms of

uniform deviates, and (iii) the speed of division in the

computer is short compared to the time needed for generation

of uniform deviates.

The more efficient scheme recycles uniform variables,

i.e. if U is given to be between constants a and b,

where 0 < a < b < 1, then (U-a)/(b-a) is a uniform random

variable. (Note that its value is not given, only that it is

in (a,b)). The expected number of uniform deviates required

7



to generate an EAR(l) process of length N with this

algorithm is 1 + (l-p)N, which is less than the number N

required to generate an i.i.d. exponential(X) sequence. Also

the expected number of logarithms is (I-p)N, while N

comparisons are always needed.

2C. The Exponential NEAR(l) Process

A broader two-parameter exponential sequence which

is a first-order autoregressive, Markovian process and an

additive linear mixture of random variables is given by

Lawrance [7] and developed by Lawrance and Lewis [5]. Called

NEAR(l), the sequence is defined as

{Xn-l w.p. a

X = n + n =1,2,..., (2.8)

0 w.p. 1-a

where 0 < a < 1 and 0 < < < 1 but a = 1 1. Also the

selection process is done independently for each n. It can

be shown that for the Xn to be marginally exponential(A)

the innovation variable cn must be generated from an En by

the exponential mixture

E w.p. 6= 1- )
E n = 1,2,... (2.9)

(l-a)E n  w.p. 1-6=

8



providing a and 8 are not both equal to one. When a = 0

or 8 = 0 the {X n  are i.i.d. exponential variables,

whereas when a = 1 the EAR(l) model given at (2.6) and (2.7)

is obtained. In fact choosing a as a function of 8 in a

suitable way, e.g. 8 = a, gives an exponential model with a

full positive range of serial correlation of order one, since

it is easily shown that

Pk (8) k (2.10)

Again

E(XnX 1  Xn) Xn + (l-aB)/X

PlXn-1 + (l-Pl)/x 2.11)

and X0  E0  gives a stationary sequence. Thus the correla-

tions and regressions are the same as for the first two models.

However the NEAR(l) process allows one to model a broader class

of exponential sequences, as measured either by sample path

behavior or higher-order joint moments; see Lawrance and Lewis

15] for details.

A particularly simple case occurs when = 1; this

model, called TEAR(l), is very tractable analytically and, as

will be shown in Section 4C, extends easily to the case of

mixed exponential distributions for the Xn.

Note that in the NEAR(l) process the innovation c

is always present unless a = 1 and it is therefore not

9



possible to simulate the stationary process with less than

N+1 uniform variates. A detailed algorithm is given in

Section 2E for a more general case. Since for a stationary

array of N Xn 's, exactly N+1 uniform deviates are required

because of the ability to recycle the uniforms and transform

them into exponentials, it could be advantageous to generate

these uniform deviates in an array which would be replaced

one at a time by the Xn 's. Care must be taken with the re-

cycling of the uniform variates U if y = 1-a is close to

one or zero. In that case it is probably better for computa-

tional reasons to use 2(N+l) uniform variates. Note that

a = 0 gives the EAR(l) process. When 8 = 1 a simpler

algorithm can be used since En is no longer a mixture of

two exponentials; this important special case is called the

TEAR(l) exponential process.

When = 1 another one-parameter sub-class of the
* 2-a

NEAR(l) process is obtained with strikingly regular sample

path properties. For this process P{X > Xn) 1/2; this
n n-l

is in striking contrast to the EAR(I) process whose sample

paths show runs-down and the TEAR(l) process whose sample

paths show runs-up. This is illustrated in Figure 1; all

sequences have p = 0.75 and are transformations of the

same En  sequence. The parameter space of the NEAR(l) process

is illustrated in Figure 2.

10



GNEAR(I) PROCESS P= 1.000

A. B .

LIIII

CC

Jill~

0 20 40 60 80 100 0 20 40 60 50 100
ALPHA=I.000 BETA= .750 ALPH{A= .750 BETA=1.0

ALPHA= .866 BETA= .866 ALPHA= .857 BETA= .875

Figure C. Sample paths of NEARD processes, all with

OL8 = P1 
= 0.75, for different values of a and S. Figure A

is the EAR(l) process (a = 1, 8 = 0.75), Figure B. is the
TEAR(l) process (a = 0.75, = 1), Figure C is the PREA 'R(1)

'*1

process =X = 0.857, and Figure D is the REAR(l) process

a = 8= (0.75)1/2. All the sample paths are transformations
of the same i.i.d. exponential sequence En, n = 0,1,...,100.
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0 <
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/ = O, I.0; d. -- I
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Figure 2. Parameter space for the NEARMl exponential auto-
regressive process. The cases a 0 and/or = 0 give
i.i.d, xoeta sequences while 1 /(2-a) gives the
partially reversible PREAR(1) process for which P(Xn < Xn I)  1/2.
For a = 1 we have the original exponential process EAR()
which tends to have runs-down. The TEAR(I case, = 1
gives very simple analytics but exhibits runs up. Also shown
is a locus of constant pl ' in this case p, a = .5.
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2D. The Generalized Exponential Process GNEAR(l) with Negative
Correlation

The exponential processes defined in Sections 2A, 2B,

and 2C do not exhibit negative correlation or alternation of

correlations. Such behaviour is found in, say, a normal linear

4 first-order process for which Pj = cor(X n , X pJ and
n n+j

-1 < p < 1 so that, for instance, P1  can be negative. A

scheme for broadening the correlation structure of the EAR(l)

ij process is given in Gaver and Lewis [1]. However in the ex-

ponential case a much simpler alternative method is available.

Assume for simplicity that A = 1. Now Xn_ 1 is

a unit exponential variable and Un = F(Xn~ l) = 1 - exp(-Xn-1 )

is a uniform (0,1) variable, as is 1 - n = exp(-X nl. Then

Xni 1 (1 - Un) = F (1 - F(Xnl)) - tn(l - exp(-Xnl) is

a unit exponential variable; in fact it is the antithetic

of XnI which gives the maximum negative correlation

attainable in a bivariate exponential distribution:

!2

r = corr(Xn1 , X 1 ) = 1 - I2 /6 = - .6449. (2.12)

Now the process

_Xn
Xn En + 8Xn-i 5n E Zn(l - e ) w.p. a

[n w.p. i-a (2.13)

or

Xn  E n + Un Xnl (2.14)

13



in which the U n'S are i.i.d. with P{Un=1} = 1 - P{U n = 0} =a

gives a process with autocorrelations which alternate in sign.

In particular p1 = r(c8). To combine this with the positive

correlation case in a continuous way we introduce a new para-

meter p c[0,1] and i.i.d. indicator variables 1n, indepen-

dent of Un , from which P{I n = } =1- P{i n = 0} = P. Then

the GNEAR(l) model is defined as

Xn = Cn + U n{InXn- 1 + (U - I)[- n(l - e - Xn - l  (2.15)

and gives a complete range of first-order serial correlations

Pl = aa[p + (l-p)r]. (2.16)

Higher lag correlations are more complicated and will be given

elsewhere. Note, however, that 1-p = 1/(l-r) gives a case

in which Xn and Xn- 1 are a bivariate exponential pair which

are dependent but have zero correlation.

Figure 3 give four sample paths for the case p = 0

for values of a and 8 corresponding to those in Figure 1,

which is the case p = 1.

2E. Algorithms for the GNEAR(1) Process

We give here two algorithms for the GNEAR(1) process,

one based on generation of uniform deviates one at a time,

the other based on the availability of subroutines to generate

arrays of uniform and exponential variables. The sequences

generated are unit exponentials (X = 1). The special case

= 1 (EAR(l)) and a = 1 (TEAR(l)) are handled separately as

they will cause divides by zero in the main algorithm.

14



GNEAR(1) PROCESS P= .000

i*

A. B.

0 *""I

0 20 40 60 80 100 0 20 40 60 80 100

ALPHA=1.000 BETA= .750 ALPHA= .750 BETA=1.O0O

C. D.

0 20 40 60 80 100 0 20 40 60 80 100

ALPHA= .866 BETA= .866 ALPHA= .857 BETA= .875

Figure 3. Sample paths for the GNEAR(l) process with p = 0,
corresponding to those in Figure 1 for the NEAR(i) process
(p 1). Here P1 = - 0.6449 a8.
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ALGORITHM GNEARIA

This algorithm generates a sample of size N from the GNEAR1

process. It is based on the generation of uniform random numbers one at

the time, with recycling of these uniform random numbers for further use.

It is assumed that a subroutine (UNIFORM) exists that generates raw

uniforms. Input values are N, ALPHA, BETA and P the last three taking

values in the closed interval [0,1]. However ALPHA = BETA = 1 is not allowed.

INPUT N, ALPHA, BETA, P

CALL UNIFORM (U) /* Generate uniform U*/

X(0) -log e(U) /* convert to exponential*/

C - (I-ALPHA)*BETA

IF ALPHA 0 THEN D 1

ELSE D - (1-BETA)/(l-C)

END IF

DO 1 1 to N

CALL UNIFORM (U)

IF U < ALPHA THEN CALL UNIFORM (V)

IF V < P THEN Y - BETA* X(I-l)

ELSE Y - - BETA* loge(l-exp(-X(I-l))3

END IF

U - U/ALPHA /* Recycle U */

ELSE Y - 0

U - (U-ALPHA)/(l-ALPHA) /* Recycle U */

END IF

IF U < D THEN Z - -loge(U/D)

ELSE Z - - C * log e (U-D)/( I-D))

END IF

X(I) - Z + Y

END DO
16



ALGORITHM GNEARIB

This algorithm generates a sample of size N from the CNEARI

process. It is based on the generation of arrays of uniform and expo-

nentially distributed random numbers. It is assumed that subroutines

UNIFORM and EXPON exist that generate arrays of uniform random numbers

and exponential random numbers respectively. For each GNEAR1 number

generated two raw uniform random numbers are used. The first is recycled

in those cases where a third uniform is needed to make the selection with

probability P. Input values are N, ALPHA, BETA and P the last three

taking values in the closed interval 10,11, except the case ALPHA BETA I 1

INPUT N, ALPHA, BETA, P

C - (I - ALPHA)*BETA

IF ALPHA= 0 THEN D 1

ELSE D (l-BETA)/(l-C)

CALL UNIFORM (U, 2*N) /*Generate array of 2N uniforms*/

CALL EXPON (E, N+l) /*Generate array of N+l exponentials*/

X(O) - E(N+I)

DO I - 1 to N

IF U(I) < ALPHA THEN V - U(I)/ALPHA /* Recyle U */

IF V < P THEN Y BETA* X(I-l)

ELSE Y - BETA* logell-exp(-X(I-1))

END IF

ELSE Y 0

END IF

IF U(I+I) < D THEN Z - E(I)

ELSE Z - C*E(I)

END IF

X(I) - Z + Y

END DO

17



3. UNIFORM MARKOVIAN SEQUENCES, NUAR(l)

It is convenient to have dependent sequences of random

variables with marginal distributions other than exponential.

Before discussing other solutions to Equation (2.8) we show

that a simple transformation of the NEAR(I) process gives a

two-parameter family of Markovian random variables with

uniform marginal distributions. It is well-known that an

exponential transformation of a unit exponential random vari-

able gives a uniformly distributed random variable. Thus we

have from (2.8) and (2.9) the multiplicative model for a

uniform Markovian sequence {X }, n = 1,2,... , calledn

NUAR(l),

En Xn-l

X
n

Cn w.p. (l-a) (3.1)

where

i-8P. (3.2)

xn = (l) wp.17= 8nn

U n w.p. 1- )(3.3)

n = 1,2,...

for Un, n = 1,2,..., i.i.d. uniformly distributed, providing

that a and S are not both equal to one. Again if X0

is uniformly distributed and independent of UI, U2, ... the

sequence is stationary.

18



The sequence is clearly quite simply extended to give

negative correlation, as in the GNEAR(1) process; in fact

Xn_ 1 in (3.1) is just replaced by (l-Xnl). Algorithms are

easily obtained by adaptation of those given in Section 2E

for the exponential case. It remains to find the correlation

structure and the regression of Xn on Xnl*

To do the former, let X* be a NEAR(l) sequence with
n= i, so that the sequence Xnat (3.1) is given by

X = exp{-X*J. Now the joint Laplace-Stieltjes transform of X*
and X* Xk ( s t ) = E{exp[- sX* - tX*_k]} , is given

nn

by Lawrance and Lewis [5]. Setting s = t 1 in

X*, X- (s,t) gives,

X*, X*_(ll) = E{exp(-X*) exp(-X*_)}
n n-knn

= E(XnXk) (3.4)

Then using the fact that for a uniform random variable

E(X) = 1/2 and var(X) = 1/12 we have, after simplification,

3 _ I
Pk corr(Xn'Xn-k) = 2 k 1 + (ic)$')

k = 1,2,... (3.5)

Note that this is not simply a geometrically decaying corre-

lation sequence, as for the NEAR(1) process. However, for

the important special case when B = 1 we get

19



Pk= , k = 1,2,... , (3.6)

and thus the serial correlations are the kth power of

PI, which takes on any value between 0 and 1. Thus we have

a particularly simple uniform Markovian sequence, although

the sample paths will tend to have runs-up.

A similar analysis given in Lawrance and Lewis [5]

shows that

1 1 + i a + au (3.7)
E(XnX I = u) = 7 ( + (l-a) -(

so that the regression is not linear for this Markov process

with uniform marginals, unless 6 = 1.

This uniform sequence could form the basis, via a

probability integral transform, of many other sequences with

given marginals. The parametrization a = 2- is a good

choice for a one parameter model since this case gives a sample

path which is partially time-reversible (see Lawrance and

Lewis [5]), with a balance of runs-up and runs-down. However,

marginal transformations do not preserve correlation structure,

as shown at (3.5), and it is therefore useful to see whether

sequences with marginals other than exponential can be generated

from (2.8); this requires finding, if possible, a suitable

choice of innovation sequence cn . The result will be a simple

process with autoregressive Markovian structure and the desired

marginal distribution.
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4. MARKOVIAN SEQUENCES WITH SOME OTHER MARGINALS

Although an exponential distribution is a common assump-

tion for positive random variables met with in problems in

operations research, it is too narrow an assumption to encom-

pass many real situations. Therefore parametric distribution

models are invoked which include the exponential as a special

case and which allow for the modelling of data which has greater

or lesser dispersion than exponentially distributed data. Two

commonly used models are

(i) the Gamma(k,A) distribution whose probability density

function is

k-l -AXxX(Xx) k le-l
f(x) A(A (k) , k > 0; X > 0; x > 0, (4.1)

where F(k) is the complete gamma function, and

(ii) the (convex) mixture of exponential random variables

-A1x -A2x
f(x) = Tr Ae + (l-r l )e , 0 < X1 < A 2;

x > 0, 0 < 7 - 1 . (4.2)

The Gamma distribution has dispersion, measured by the coef-

ficient of variation C(X) = a(X/E(X)), which is greater than

the exponential value of 1 if k < 0 and less than 1 if k > 1.

The mixed exponential always has C(X) > 1, the equality

occurring when the special case of an exponential random

variable with parameters X1 or A2 holds.
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4A. The Gamma GAR(1) process

The solution of the standard first-order autoregres-

sive equation (2.6) with stationary gamma marginals defines

the GAR(1) process. Using Laplace-Stieltjes transforms with

(2.6) shows that for X to be Gamma (k,A), we must have

nk

c (s) = E(e -  ) p + (l-p) _ . (4.3)

For k integer this has an explicit inverse. For example,
2

for k = 2 the innovation £ is zero with probability p ,

is exponential() with probability 2p(l-p) and is Gamma(2,X)

2
with probability (l-p) . It is easy to show in general that c

k
is zero with probability p , so that the "zero defect" is not

serious for large k. A method of simulating a random variable

whose Laplace-Stieltjes transform is equation (4.3) was derived

by Lawrance 171, using the fact that this sequence arises in

a particular type of shot noise process. From this we have the

Gamma Innovation Theorem

Let N be a Poisson random variable with parameter

e = -k £n(p). Let UI, U2 ,... , UN be uniformly distributed

over (0,1) and independent. Let Y1 .'''. YN be exponential(A)

and independent. Then £ can be simulated using

N U
= P if N > 0 (

=I

0 if N 0 (4.4)



A proof is not given here. Note that E is zero with prob-

k
ability exp{-k kn(p) } = p Also the Poisson number N

of uniform and exponential random variables which must be

generated for each E has expected value 6 = -k kn(p).

This will be prohibitively large, and the simulation will be

very inefficient, if k is large and/or p is close to zero.

Neither of these cases is serious, however. If k is large,

say greater than 50, the sequence is almost normal and the

usual normally distributed, AR(l) linear process can be used.

If p is as small as 0.001 then E(N) is only k x (6.9078)

which is still reasonable. However, for p this small the

sequence is approximately i.i.d. Gamma and acceptance-rejection

techniques for simulating Gamma variables are known.

It is quite simple to write algorithms for the GAR(l)

case analogous to those in Section 2E. It would pay to have a

built-in routine for generating the Poisson variable which will

bypass further calculations if N = 0. In other words routines

for generating Poisson variates which start by searching at the

median of a table of cumulative Poisson probabilities will be

inefficient.

Unfortunately the NEAR(l) process does not appear to

extend to the Gamma case; it can be shown explicitly that

there is no innovation En in equation (2.8) which will make

Xn have a Gamma distribution with k = 2 if a 4 1.

There is, however, another model, the Gamma-Beta model,

inspired by an example in Verwaart [16] and discovered inde-

pendently by Fishman [17], which is quite broad and which can

be simulated using the Gamma Innovation Theorem.
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4B. The Gamma-Beta Model, GBAR(l)

This model is a linear autoregressive process with

random coefficients which includes the GAR(l) process but is

of limited practical use in data analysis because its likeli-

hood function is analytically untractable. Nevertheless it

could be useful in simulations, particularly if the zero-defect

in the GAR(l) process is unacceptable.

Thus, we define the stationary sequence as

SXn = 8Bn X n + En  0 < 8 < 1 , n = 0, + 1, + 2,..., (4.5)

where the B's are i.i.d. and independent of Xn I , andn nl

B , for X to have a Gamma (k,A) distribution, has an n

Beta(k-b,b) distribution with mean E(Bn} = (k-b)/k. The density is

F (k) k-b-i b-1

f B (x) = r (x- ) r-x) x0 < x < 1 (4.6)
n

0 < b < k

The distribution of the i.i.d. ens to make Xn Gamma (k,X)

is still to be determined. To do this and to see the rationale

behind the model, it is simplest to obtain the distribution of

BnXnl

Now Bn  can be generated as Z1 /(Z1 +Z2) where

Z1 and Z2 are independent and Gamma (k-b,X) and Gamma (b,X)

respectively. Moreover, Bn is independent of (Z1+Z2), which

could be used to generate Xnl* Then,

BnXn 1 = {ZI/(ZI+Z2 )} {ZI+Z2  =Z is Gamma (k-b,X) . Using
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this fact, which can also be shown analytically, and the

defining equation (4.3) we have

S(en) X S) = B x( S) F (S) (4.7)\n n n-i n

so that on using the fact that for a Gamma(k,A) variable the
k

Laplace-Steiltjes transform is (A/A+s) , we have

(s) = ( X (S)Ifn nn -

k gs k -b

= { x- s (- + - (1-8)

b =+l-) 1 k-b (4.9)
1+

Thus En is generated as the sum of a Gamma (b,A) variate

and, from (4.3), a Gamma innovation variable which can be

generated from (4.4).

For this model

= corr(X n - j = 0,1,2,... (4.10)

and

E(Xn Xn-l = Xn_ 1) P 1 Xn-l + (1-Pl .E(Xn).

Also when b = 0 we have the GAR(l) model. If a = 1 the

model requires only a Gamma (b,A) variate for en and a
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Beta(k-b,b) variate for B in the simulation. The case

n

k = 1 gives an exponential process which is not the same as

the NEAR(l) process.

It should be noted that while the Gamma Innovation

Theorem makes the Gamma-Beta model tractable from a simulation

viewpoint, it is still difficult to unite down a likelihood

function or to get negative correlation. Thus further

developments are needed from the Gamma case. An algorithm is

given for the Gamma Beta Model on the next page.

4C. Mixed Exponential Markovian Processes MEAR(l) and TMEAR(1)

In addition to Gamma processes, first-order autore-

gressive Markovian processes with mixed exponential marginal

distributions can be obtained from equations (2.8) and (2.9)

in two special cases, and these sequences should be widely

useful in modelling stochastic systems.

(i) The case a = 1; MEAR(l).

In Gaver and Lewis [1] it is shown that the solution

to the Laplace transform of £n for the linear model (2.6)

is a constant p plus a (generally) non-convex mixture of

three exponential functions. This can be shown to be a proper

density function if p < A1/A2, but it can also be shown that

it is not a density function for all p less than one and

greater than or equal to zero. More particularly, Lawrance [6]

showed that unless XI is much smaller than X2  (and thus

the X n are very over-dispersed relative to an exponential

random variable) a solution exists for en for all p. Thus
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ALGORITHM GBARI (GAMMA-BETA MODEL)

This algorithm generates a sample of size N from the GBARI

process using array generators POISSON, UNIFORM, EXPONENTIAL and GAMMA

to produce Poisson, Real Uniform (0,1), Exponential and Gamma distributed

random numbers.

The following restrictions exist on the input parameters:

0 < B <K

O<K

0 < BETA < 1

INPUT N, BETA, B, K

TH ( -(K-B) * lOge(BETA) /* Initialization */

CALL POISSON(PSN,N,TH) /*Generate N poisson deviates with parameter TH */

CALL GAMMA(Zl,N,K-B) /*Generate N Gammas with parameter K-B */

CALL GAMMA(Z2,N,B) /*Generate N Gammas with parameter B */

CALL GAMMA(X(O), 1,K) /* Initialize X(O) */

DO I - 1 to N

CALL UNIFORM(U,PSN(I) /* Generate PSN(I) real (0,1) uniforms */

CALL EXPON(E,PSN(I)) /* Generate PSN(I) Unit Exponentials */

Y - 0

DO J 1 TO PSN(I)

Y Y + E(J) * BETA ** U(J)

END DO

BN - Zl(I)/(Zl(I) + Z2(I)) /* Compute BETA Deviate */

X(I) + BETA * BN * X(I-I) + Y

END DO
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we have a useful process, although again the zero-defect of

* order p is a problem. However, one case which cannot be

simulated this way occurs when 1/X2 = 0 , i.e. X is zero

* with probability 1-71, and exponential (AI) otherwise. This

kind of situation occurs in practice as, e.g., the waiting time

for an item in an inventory system. Fortunately it can be

.4 handled in the next case.

(ii) The case B = 1; TMEAR(1).

When B =1 in equation (2.8), a mixed exponential

process TMEAR(1) is obtained which is extremely simple to

simulate since the innovation cn is just the mixture of two

* exponentials for all 0 < p < 1. Moreover, the process has

no zero-defect. As discussed above, the sample paths will

tend to "run up," but this is no great problem unless p is

fairly large. Thus we have the following Theorem (Lawrance and

Lewis [18]) which we state without proof:

TMEAR(1) Theorem

Let the first-order autoregressive, Markovian sequence

{X be defined by
n

Xn = En + VnXn 1 , n = 1,2,3,...

where for the i.i.d. sequence Vn, n = 1,2,3,...,

P{Vn=1} = 1 - P{Vn=01 = a for 0 < a < 1. Then the sequence

{Xn } is stationary and has a (convex) mixed exponential

marginal distribution with probability density function
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x -Ax
fX xW 7r 1A e + 7T2_ 0 (4.11)

where 0 < X < A21  ~ <1 r
1 -and2

if E: is i.i.d. and has a (convex) mixed exponential

distribution given by

-Yl x -Y 2 x

fx C n lyle + "2Y2 e x> 0

with Yl> Y2> 0; T1" T1 > 0, n + n2= (4.12)

where

E M (X = IT 2  + T 1 J ;~ (4.13)

b = p1l + P2 - ap;(4.14)

= P1+ P2 - P (4.15)

a = (1-cs)PlP 2 ;(4.16)

1 2_
4YlIY 2 = -i -b, b4a]} ;(4.17)

Y= T112P1 + 711P2  (4.18)

n= (YlrYO)/(Yi-Y 2 ) n2= (Y2-Yo)/('Y2-Yl) (4.19)

and X0is independent of E:11 E 2 F . and has probability

density function (4.11).

Note that the special cases where n110 or Tr2 =

give NEAR(1) exponential processes with parameters X 2  and
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X1 respectively. Thus they should be handled by Algorithm 2

since they will cause computational problems. The case

X1 = )2 also gives a NEAR(1) process and is excluded for

similar reasons. This guarantees that Y1 > 2. The

algorithm on the following page implements this theorem.

5. GENERALIZATIONS

In all of the processes discussed here except the

exponential GNEAR(1) the correlations are non-negative and

geometrically decreasing. A particular scheme for obtaining

negative correlation is given for the exponential case.

Another scheme for obtaining alternating correlations which

are possibly negative and which is broadly applicable is

given in Gaver and Lewis [1] and in Lawrance and Lewis [5].

Another problem is that different types of dependence and

higher-order Markovian dependence might be encountered in

data. Schemes for obtaining mixed autoregressive moving

average exponential sequences where the autoregression has

order p and the moving average has order q are given in

Lawrance and Lewis [4]. The mixed exponential process

TMEAR(l) is easily extended to give a process with this type

of extended correlation structure. This will be discussed

elsewhere.
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ALGORITHM TMEARI

This algorithm generates a sample of size N from the TMEARI

process. It is based on the gE. eration of arrays of uniform and unit

exponential numbers. Subroutines UNIFORM and EXPON are assumed to exist

to generate such arrays. For each TMEARi number generated two raw uniform

random numbers and one exponential number are needed.

INPUT N, Pl1, P12, MUI, MU2, ALPHA

MU < PI1 * MU2 + P12 * MU2 /* Initialization */

B MUl + MU2 - ALPHA * MU

A (1 - ALPHA) * MUl * MU2

T 4SQRT(B B - 4 * A)

G2 .5 * (B- T)

Gl - .5 * (B + T)

GO 4 P12* MUl + PII * MU2

El (Gl- GO)/GI - G2)

RI = I/G1

R2 = I/G2 /* Initialization */

CALL UNIFORM(U,2*N+l) /* Generate 2N+1 uniforms */

CALL EXPON(E,N+I) /* Generate N+1 unit exponentials */

IF U(2N+l) < PII THEN X(O) - MLl * E(N+l)

ELSE X(O) - MU2 * E(N+l)

END IF

DO I- to N

IF U(I) < El THEN Z - RI *E(I)

ELSE Z - R2 *E(I)

END IF

IF U(I+I) < ALPHA THEN Y - (x(I-1)

ELSE Y + 0

END IF

X(1) + Y + Z

END DO
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